List of Import References :
See BOOL
See DENOTATION
See MapByOS
See Nat
See Option
See Pair
See Seq
See Set
SIGNATURE MapByOSReduce[dom, <, codom, to]
$Date: 2010-09-30 18:24:17 +0200 (Do, 30. Sep 2010) $ ($Revision: 616 $)
-- reducing the codomain of maps -- Parameter SORT dom codom to FUN < : dom ** dom -> bool -- total strict-order; in -- ~(x < y) AND ~(y < x) => x = y -- should = represent semantic equality IMPORT MapByOS[dom,<,codom] ONLY map FUN / : (codom ** to -> to) ** to ** map[dom,<,codom] -> to -- (o, e) / m -- reduce m by o on codom with value e as initial 2nd argument -- function f should be left-commutative: x o (y o z) = y o (x o z) -- since reduction order is implementation dependent and should -- not be relevant! -- informally: -- (o, e)/({(d1->c1),(d2->c2),...,(dn->cn)}) = -- c1 o (c2 o (...(cn o e)...)) FUN / : (dom ** codom ** to -> to) ** to ** map[dom,<,codom] -> to -- (o, e) / m -- reduce m by o on codom with value e as initial 2nd -- argument -- function o should be left-commutative: (d1,c1) o ((d2,c2) o z) -- = (d2,c2) o ((d1,c1) o z) -- reduction order is implementation dependent and should -- not be relevant! -- informally: -- (o, e)/({(d1->c1),(d2->c2),...,(dn->cn)}) -- == (d1,c1) o ((d2,c2) o (...((dn,cn) o e)...)) -- old fashioned notation FUN / : (codom ** to -> to) ** to -> map[dom,<,codom] -> to FUN / : (dom ** codom ** to -> to) ** to -> map[dom,<,codom] -> to -- (o, e) / m == (o/e)(m)
next node: MapByOSCompose,
prev node: MapByOSMap,
up to node: Subsystem Maps By Ordered Sequences